limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2
Let y=limx→1{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2
Taking log on both sides, we gets
logy=1−cos(x−1)(x−1)2log{x3+2x2+x+1x2+2x+3}y=e1−cos(x−1)(x−1)2log{x2+2x2+x+1x2+2x+3}∴{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2=e1−cos(x−1)(x−1)2log{x3+2x2+x+1x2+2x+3}
taking limit x→∞ we get
limx→∞{x3+2x2+x+1x2+2x+3}1−cos(x−1)(x−1)2=limx→∞e1−cos(x−1)(x−1)2log{x3+2x2+x+1x2+2x+3}