limx→3x2−x−6x3−3x2+x−3
limx→3x2−x−6x3−3x2+x−3(00form)
=limx→3x2−3x+2x−6x2(x−3)+1(x−3)
=limx→3x(x−3)+2(x−3)(x−3)(x2+1)
=limx→3(x−3)(x+2)(x−3)(x2+1)
=limx→3x+2x2+1=3+2(3)2+1=510
=12
limx→2{1x−2−2(2x−3)x3−3x2+2x}