limx→5ex−e5x−5
Put x=5+h
⇒ h=x−5
as x→5,h→0
=limh→0e5+h−e5h
=e5limh→0eh−1h
=e5×1
=e5
Find:
(i)limx→2[x]
(ii)limx→52[x]
(iii)limx→1[x]