limx→acos x−cos a√x−√a
=limx→a(−2sin(x+a2)sin(x−a2))×(√x+√a)(√x−√a)(√x+√a)
=−2limx→asin(x+a2)sin(x−a2)×(√x+√a)(x−a)
=−2limx→asin(x+a2)×limx→asin(x−a2)(x−a2)×12
limx→a(√x+√a)
=−2sin(a)×1×12×2√a[∵limθ→0sinθθ=1]
=−2√asin a