limx→π2√3−tan xπ−3x
limx→π2√3−tan xπ−3x
Let x=π3+y
y=x−π3asx→π3,y→0
=limy→0√3−tan(π3−y)3(π3−x)
=limy→0⎛⎜ ⎜ ⎜⎝√3−tanπ3−tan y1+tanπ3.tan y3y⎞⎟ ⎟ ⎟⎠
=limy→0⎧⎪⎨⎪⎩(√3−√3−tan y1+√3tan y)3y⎫⎪⎬⎪⎭
=limy→0(√3+3 tan y−√3+tan y)3(1+√3tan y)y
=limy→04 tan y3(1+√3tan y)
=43×limy→0tan yy×1limy→0(1+√3tan yy×y)
=4×13×11+0=43