limx→π2tan2xx=π2
At x=π2, the value of the given function takes the form 00
Now, put x=π2=ysothatx→π2,y→0
∴limx→π2tan2xx−π2=limx→0tan2(y+π2)y
=limx→0tan(π+2y)y
=limy→0sin2ycos2y
=limy→0(sin2y2y×2cos2y)
=(lim2y→0sin2y2y)×limy→0(2cosy)[y→0⇒2y→0]
=1×2cos0[limx→0sinxx=1]
=1×21
=2