limx→∞√x2+7x−x
On Rationalising, we get
=limx→∞((√x2+7x−x)(√x2+7x+x)(√x2+7x+x))
=limx→∞((x2+7x)−x2√x2+7x+x)
=limx→∞7x√x2+7x+x
=limx→∞7x√x2+(1+7xx2)+x
=limx→∞7xx√1+7x+x
as x→∞,1x→0
=limx→∞7√1+7x+1
limx→5x3−125x2−7x+10