limx→π√2+cosx−1(π−x)2
limx→π√2+cosx−1(π−x)2
=limx→π√2+cosx−1(π−x)2×√2+cosx+1√2+cosx+1
=limx→π(2+cosx)−1(π−x)2(√2+cosx+1)
=limx→π1+cosx(π−x)2(√2+cosx+1)
Let π−x=y,x→π,y→0
=limy→01+cos(π−y)√2+cos(π−y)+1
=limy→02sin2y2√2−cosy+1
=2limy→0(siny2y2)2×141√2−cosy+1
=2×(limy→0siny2)2×141limy→0√2−cosy+1
=2×1×141√2−1+1
=2×1×1411+1
=2×1×14×12=14