limn→∞2-n(n2+5n+6)(n+4)(n+5)=
0
1
∞
-∞
Explanation for the correct option:
Finding the value of the given limit:
limn→∞2-n(n2+5n+6)(n+4)(n+5)=limn→∞2-nn2+3n+2n+6(n+4)(n+5)=limn→∞2-n(n+2)(n+3)(n+4)(n+5)[Solvingthenumeratorbysplittingthemiddleterm]=limn→∞12n×(n+2)(n+3)n2(n+4)(n+5)n2=limn→∞12n×1+2n1+3n1+4n1+5n
Applying the limits,
=12∞1+2∞1+3∞1+4∞1+5∞=1∞1×11×1∵x∞=∞andx∞=0=1∞=0
Therefore, the correct answer is option (A).