Evaluate limx→016x+9x21x
252
12
1
14
Explanation for the correct option:
Finding the value of the given limit:
limx→016x+9x21x=l (say) (1∞form)
Now,
l=limx→016x+9x21x=limx→0e1x16x+9x2-1=explimx→01x16x+9x2-1=explimx→01216x+9x-1-1x=explimx→01216x-1x+9x-1x=explimx→012ln16+ln9[∵limx→0ax-1x=lna]
Applying the limits,
l=e12ln16+ln9=e12ln16+12ln9=eln1612+ln912[∵alnb=lnba]=eln4+ln3=eln12[∵lna+lnb=lnab]=12
Therefore, the value of the given equation is 12
Hence, option (B) is the correct answer.
Evaluate the following limits:
limx→−52x2+9x−5x+5