Evaluate:limx→0ex-esinxx-sinx
-1
0
1
None of these
Explanation for the correct answer:
Simplifying the equation to determinate form and applying the limits:
⇒limx→0ex-esinxx-sinx⇒limx→0ex-esinxcosx1-cosxDifferentiating⇒limx→0ex-esinx-sinx+esinxcosx·cosx0--sinxDifferentiating⇒limx→0ex+esinx.sinx-cos2x·xesinxsinx⇒limx→0ex+esinxcosx+sinx·esinx-cos2x·esinxcosx-2cosx-sinxesinxcosxDifferentiating
Applying the limits
⇒e0+e0×1+0·e0·1-12·e0·1-2·1-0e01⇒1+1-1⇒1
Thus, limx→0ex-esinxx-sinx=1
Therefore, the correct answer is option (C).
Evaluate :cos48°-sin42°