wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:limx0ex-esinxx-sinx


A

-1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

0

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

1

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is C

1


Explanation for the correct answer:

Simplifying the equation to determinate form and applying the limits:

limx0ex-esinxx-sinxlimx0ex-esinxcosx1-cosxDifferentiatinglimx0ex-esinx-sinx+esinxcosx·cosx0--sinxDifferentiatinglimx0ex+esinx.sinx-cos2x·xesinxsinxlimx0ex+esinxcosx+sinx·esinx-cos2x·esinxcosx-2cosx-sinxesinxcosxDifferentiating

Applying the limits

e0+e0×1+0·e0·1-12·e0·1-2·1-0e011+1-11

Thus, limx0ex-esinxx-sinx=1

Therefore, the correct answer is option (C).


flag
Suggest Corrections
thumbs-up
8
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon