Evaluate: limx→01-cos2x2x
2
-1
0
does not exist
Explanation for the correct option:
Find the value oflimx→01-cos2x2x
Consider the given Equation as,
I=limx→01-cos2x2xI=1-cos2020I=00[IndeterminentForm]
Using the L' hospital rule
limx→0fxgx=limx→0f'xg'x
I=limx→01-cos2x2x⇒I=limx→0121-cos2xsin2x×22×1⇒I=limx→011-cos2xsin2x2×1⇒I=limx→0sin2x2×1-cos2x
We know that
cos2θ=2cos2θ-1orcos2θ=1-2sin2θ
Then,
I=limx→0sin2x2×1-1+2sin2x⇒I=limx→0sin2x2×2sinx⇒I=limx→0sin2x2sinx
⇒I=limx→0xsin2x2xsinx⇒I=limx→0xsinxRHLI=1andLHLI=-1
Hence, the correct answer is option D.