limx→0sinπcos2xx2
π2
1
-π
π
Explanation for the correct option:
Find the value of limx→0sinπcos2xx2
Consider the given Equation as
I=limx→0sinπcos2xx2⇒I=limx→0sinπ1-sin2xx2[Where,cos2x=1-sin2x]⇒I=limx→0sinπ-πsin2xx2⇒I=limx→0sinπsin2xx2
Multiply and divided by πsin2x
I=limx→0sinπsin2xπsin2x×πsin2xx2
We know that
limx→0sinxx=1
Then,
I=limx→0sinπsin2xπsin2x×πsin2xx2⇒I=1.π1⇒I=π
limx→0sinπcos2xx2=π
Hence, the correct answer is option D.