Evaluate:limx→0tanx-sinxx3
12
-12
0
1
Explanation for the correct option:
Determine the value of limx→0tanx-sinxx3
Consider the given Equation as,
I=limx→0tanx-sinxx3
⇒I=limx→0sinxcosx-sinxx3[∵tanx=sinxcosx]⇒I=limx→0sinx1-cosxcosx.x3⇒I=limx→0sinxxlimx→01-cosxx2limx→01cosx⇒I=1×limx→01-cosxx2×1
Using the L' hospital rule
I=limx→01-cosxx2⇒I=limx→0sinx2x⇒I=12[Where,limx→0sinxx=1]
Hence, the correct answer is option A.
Evaluate :cos48°-sin42°