Evaluate:limx→1e-x-e-1x-1
1e
-1e
1
None of these
Explanation for the correct option:
Find the value of limx→1e-x-e-1x-1
Consider the given Equation as
I=limx→1e-x-e-1x-1I=e-1-e-11-1I=00indeterminateform
Using the L' hospital rule
limx→afxgx=limx→af'xg'x
Then,
I=limx→1e-x×-1-01[∵ddxex=ex]I=e-1×-1-01I=-e-1I=-1e
Hence, the correct answer is option B.