limx→1xm-1xn-1=
nm
mn
2mn
2nm
Explanation for the given option:
Find the value of limx→1xm-1xn-1:
The given equation is,
I=limx→1xm-1xn-1I=1m-11n-1I=00indeterminentform
Using the L' Hospital rule
limx→afxgx=limx→af'xg'x
I=limx→1m.xm-1n.xn-1I=mnlimx→1xm-1xn-1I=mn1m-11n-1I=mn1I=mn
Hence, the correct answer is option (B).
[Hint: multiply numerator and denominator by xn − 1 and put xn = t]