limitx→∞x2+2x-1-x=
∞
12
4
1
Explanation for the correct option:
Evaluating the limitx→∞x2+2x-1-x
when we substitute infinite, we get the value -∞,∞
=limitx→∞x2+2x-1-x=limitx→∞x2+2x-1-x×x2+2x-1+xx2+2x-1+xmultiplyanddivideby(x2+2x-1)+x=limitx→∞x2+2x-12-x2x2+2x-1+x=limitx→∞x2+2x-1-x2x2+2x-1+x=limitx→∞x2-1xx21+2x-1x2+x=limitx→∞x2-1xx1+2x-1x2+1=2-1∞1+2∞-1∞2+1=2-01+0-0+1[∵1∞=0]=22=1
Hence, option (D) is the correct answer
limx→-∞2x-1x2+2x+1=