Evaluate : limitx→∞x+2x+1x+3
1
e
e2
e3
Explanation for the correct option:
Evaluate the limit
If we substitute the limit it becomes the value ∞∞∞that does not exist, therefore,
=limitx→∞x+2x+1x+3=limitx→∞x+1+1x+1x+1+2=limitx→∞1+1x+1x+1+2=limitx→∞1+1x+1x+1.1+1x+12[∵ax+y=ax.ay]=limitx→∞1+1x+1x+1limitx→∞1+1x+12=e.1+1∞+12[∵limitx→∞1+1xx=e]=e.1+02[∵1∞=0]=e
Hence, option (B) is the correct answer
Evaluate the following limits :
limx→∞(3x−1)(4x−2)(x+8)(x−1)