Evaluate limx→∞xsin2x
∞
0
2
12
Explanation for the correct option:
Evaluating the Limit limx→∞xsin2x
When we substitute limit, it becomes the value ∞ does not exist
=limx→∞xsin2x=limx→∞xsin2x2x2x[multiplyanddivideby2x]=limx→∞2x.x.sin2x2x=limx→∞2.sin2x2x
Let us assume y=2x
Where x→∞⇒y→2∞=0
=limx→∞2×limy→0sinyy[∵limitx→0sin(x)x=1]=2×1=2
Hence, option (C) is the correct answer.