log1/4(35−x2x)≥−12
35−x2x≤(14)−12
35−x2x≤(4)1/2
35−x2x≤2
35−x2≤2x
x2+2x−35≥0
x2+7x−5x−35≥0
(x+7)(x−5)≥0
x∈[−∞,−7]∪[5,∞)
The solution of the differential equation dydx=1+x+y+xy is