log(logi) equals
logπ2
logiπ2
logπ2+iπ2
logπ2-iπ2
Explanation of the correct option.
Compute the required value.
We know that, i=eiθ
eiθ can be written as cosθ+isinθ
i=cosθ+isinθ
Since, the angle θ=π2.
i=eiπ2
Given: log(logi)
Substitute the value of i.
log(logi)=log(logeiπ2)∵logax=xloga⇒log(logi)=log(iπ2)⇒log(logi)=log(π2eiπ2)∵i=eiπ2⇒log(logi)=logπ2+logeiπ2∵logab=loga+logb⇒log(logi)=logπ2+iπ2
Hence, option C is the correct answer.