(A) ∣∣|z|−1|z|∣∣≤∣∣z+1z∣∣
−2≤|z|−1|z|≤2
|z|2+2|z|−1≥0 and |z|2−2|z|−1≤0
|z|≥√2−1,|z|≤√2+1
|z|min=√2−1
so minimum value of |z|tanπ8=1
(B) |z|=1
Let z=cosθ+isinθ
znz2n+1−z−n(¯¯¯z)2n+1
=cosnθ+isinnθ1+cos2nθ+isin2nθ−cosnθ−isinnθ1+cos2nθ−isin2nθ
=cosnθ+isinnθ2cosnθ(cosnθ+isinnθ)−cosnθ−isinnθ2cosnθ(cosnθ−isinnθ)
=12cosnθ−12cosnθ
=0
(C) 8iz3+12z2−18z+27i=0
⇒(2iz+3)(4z2+9i)=0
⇒z=32i,z2=−94i⇒2|z|=3
(D) z4+z2+z2+z+1
=(z−z1)(z−z2)(z−z3)(z−z4)
Put z=−2
Π4i=1(zi+2)=(−2)4+(−2)3+(−2)2+(−2)+1=11