wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the elements of List 1 with elements of List 2

Open in App
Solution

(A) |z|1|z|z+1z
2|z|1|z|2
|z|2+2|z|10 and |z|22|z|10
|z|21,|z|2+1
|z|min=21
so minimum value of |z|tanπ8=1
(B) |z|=1
Let z=cosθ+isinθ
znz2n+1zn(¯¯¯z)2n+1
=cosnθ+isinnθ1+cos2nθ+isin2nθcosnθisinnθ1+cos2nθisin2nθ
=cosnθ+isinnθ2cosnθ(cosnθ+isinnθ)cosnθisinnθ2cosnθ(cosnθisinnθ)
=12cosnθ12cosnθ
=0
(C) 8iz3+12z218z+27i=0
(2iz+3)(4z2+9i)=0
z=32i,z2=94i2|z|=3
(D) z4+z2+z2+z+1
=(zz1)(zz2)(zz3)(zz4)
Put z=2
Π4i=1(zi+2)=(2)4+(2)3+(2)2+(2)+1=11

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon