Consider the given function.
limx→0(esinx−sinx−1x2)
This is 00 form.
So, apply L-Hospital rule,
limx→0(esinxcosx−cosx−02x)
limx→0((esinx−1)cosx2x)
This is 00 form.
Again, L-Hospital rule
limx→0((esinx−1)(−sinx)+(esinxcosx−0)cosx2)
limx→0((esin0−1)(−sin0)+(esin0cos0)cos02)
limx→0(0+(1×1)×12)
=12
Hence, this is the answer.