The correct option is
C 4limx→−1(x+1)2−√4+x+x2this is of the form %, so we use L′ hospital rule
if limx→af(x)g(x)f(a)=g(a)=0
Then limx→af(x)g(x)=limx→af′(x)g′(x)
⇒limx→−1(1)−(1+2x)2√4+x+x2
⇒limx→−1−2√4+x+x2(1+2x)
⇒−2√4−1+11+2(−1)
⇒−2×2−1
⇒4
∴limx→−1x+12−√4+x+x2=4