We have,
limx→π(xπ−πxxx−ππ)
This is the 00 form.
So, apply L-Hospital rule,
limx→π(πxπ−1−πxlogeπxx(logex+1)−0)
limx→π(πxπ−1−πxlogeπxx(logex+1))
=πππ−1−ππlogeπππ(logeπ+1)
=ππ−ππlogeπππ(logeπ+1)
=1−logeπ(logeπ+1)
=logee−logeπ(logeπ+logee)
=logeeπloge(eπ)
=logeeπ×logeπe
Hence, this is the answer.