Partially differentiating both sides w.r.t x
3x2u+x3∂u∂x=1ye(xy)sin(yx)−yx2e(xy)cos(yx)
⟹3x2u+x3∂u∂x=ux3y−yx2e(xy)cos(yx) → (2)
Partially differentiating (1) both sides wrt y
x3∂u∂y=−xy2e(xy)sin(yx)−1xe(xy)cos(yx)
⟹x3∂u∂y=−x4uy2−1xe(xy)cos(yx) → (3)
(2)+(3)×yx
⟹3x2u+x3∂u∂x+x2y∂u∂y
⟹ux3y−yx2e(xy)cos(yx)−ux3y+yx2e(xy)cos(yx)
∴3x2u+x3∂u∂x+x2y∂u∂y=0
⟹x∂u∂x+y∂u∂y+3u=0
Partially differentiating both sides wrt x and y separately,
⟹x∂2u∂x2+∂u∂x+y∂2u∂x∂y+3∂u∂x=0 → (4)
⟹x∂2u∂x∂y+∂u∂y+y∂2u∂2y+3∂u∂y=0 → (5)
(4) ×x+(5) ×y
⟹x2∂2u∂x2+2xy∂2u∂x∂y+y2∂2u∂y2+4(x∂u∂x+y∂u∂y)=0
∴⟹x2∂2u∂x2+2xy∂2u∂x∂y+y2∂2u∂y2=12u