The correct option is C 427
Let y=x(1−x)2, then for maximum/minimum
dydx=1.(1−x)2−2x(1−x)=0
⇒(1−x)[1−x−2x)=0⇒(1−x)(1−3x)=0
⇒x=1,x=13
Now d2yd2x=(−1)(1−3x)+(1−x)(−3)
=(−1)(1−3)+(1−1)(−3)=2atx=1
d2ydx2=2>0
∴ At x =1, y is minimum
d2ydx2=(−1)[1−3(13)]+(1−13)(−3)
=(−1)(0)+(23)(−3)=−2
Maximum at x=1/3,d2ydx2<0
∴ y is maximum
∴y=13(1−13)2=13(23)2=427