Let Sk,k=1,2,...,100, denote the sum of the infinite geometric series whose first term is k−1k! and the common ratio is 1k. Then the value of 1002100!+∑100k=1∣∣(k2−3k+1)Sk∣∣ is
Open in App
Solution
We have, Sk=k−1k!1−1k=1(k−1)!
Now, (k2−3k+1)sk={(k−2)(k−1)−1}×1(k−1)! =1(k−3)!−1(k−1)! ⇒∑100k=1∣∣(k2−3k+1)Sk∣∣=1+1+2−(199!+198!) =4−1002100! ⇒1002100!+∑100k=1∣∣(k2−3k+1)Sk∣∣=4