(i) ∫(sinx+cosx)dx
=∫(sinx)dx+∫(cosx)dx
=−cosx+sinx+C
Where C is constant of integration
(ii) ∫cosec x(cosec x+cotx)dx
=∫(cosec2 x+cosec xcotx)dx
=∫cosec2 xdx+∫cosec xcotxdx
=−cotx−cosec x+C
Where C is constant of integration
(iii) ∫1−sinxcos2xdx
=∫(1cos2x−sinxcos2x)dx
= ∫(sec2x−sinxcosx1cosx)dx
= ∫(sec2x−tanxsecx)dx
= ∫sec2xdx−∫(tanx.secx)dx
=tanx−secx+C
Where C is constant of integration