Solve: 4n2+5n−636=0
Given: 4n2+5n−636=0
Using quadratic formula, we get,
⇒x=−b±√b2−4ac2a
⇒x=−5±√(5)2−4(4)(−636)2(4)
=−5±√25+101768
=−5±√102018
=−5±1018
⇒x=−5+1018 or x=−5−1018
⇒x=968 or x=−1068
∴x=12,−534
If n2+5=5(n+1);n>0, then find the cube of n.