Let there exist a unique point P inside a △ABC such that ∠PAB=∠PBC=∠PCA=α. If PA=x,PB=y,PC=z,Δ= area of △ABC and a,b,c, are the sides opposite to the angle A,B,C respectively, then tanα is equal to
A
a2+b2+c24Δ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a2+b2+c22Δ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
4Δa2+b2+c2
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
2Δa2+b2+c2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C4Δa2+b2+c2 Given, ∠PAB=∠PBC=∠PCA=α and PA=x,PB=y,PC=z
By cosine rule, in △PCA cosα=z2+b2−x22bz ⇒x2=z2+b2−2bzcosα⋯(1)
Similarly, y2=x2+c2−2cxcosα⋯(2)
and z2=y2+a2−2aycosα⋯(3)
Adding the equestions (1),(2) and (3), we get 2(cx+ay+bz)cosα=a2+b2+c2 ⇒cosα=a2+b2+c22(cx+ay+bz)⋯(4)
Also, Δ= area of △ABC ⇒Δ=area of △PAB+area of △PBC+area of △PCA ⇒Δ=12cxsinα+12aysinα+12bzsinα ⇒Δ=12(cx+ay+bz)sinα ⇒sinα=2Δ(cx+ay+bz)⋯(5)
From (4) and (5), we have tanα=4Δa2+b2+c2