The correct option is B 5π6
Given: cos−1(cos7π6)
We know that the range of the principal value branch of cos−1 is [0,π].
∴cos−1(cos7π6)=cos−1(cos(π+π6))
=cos−1(−cos(π6))
∵cos−1(−x)=π−cos−1x,
⇒cos−1(−cos(π6))=π−cos−1(cos(π6))
i.e., cos−1(cos7π6)=π−π6=5π6
Hence, the correct option is (B).