wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(i) Differentiate the given function w.r.t. x.
3x+2+12x2+4

(ii) Differentiate the given function w.r.t. x.
esec2x+3 cos1x

(iii) Differentiate the given function w.r.t. x
log7(logx)

Open in App
Solution

(i) Let y=3x+2+12x2+4
Differentiating w.r.t. x , we get,

dydx=d(3x+2+12x2+4)dx

dydx=d(3x+2)dx+d(12x2+4)dx

Using chain rule : dydx=dydu×dudx

dydx=123x+2×d(3x+2)dx12(2x2+4)121.d(2x2+4)dx

dydx=123x+2×(3+0)12(2x2+4)32.(4x+0)

dydx=323x+22x(2x2+4)32

(ii) Let y=esec2x+3 cos1x
Differentiating w.r.t. x , we get,

dydx=esec2x+3 cos1xdx

dydx=d(esec2x)dx+d(3cos1x)dx

Using chain rule : dydx=dydu×dudx

dydx=esec2x.2 sec x.d(sec x)dx31x2

dydx=esec2x.2 secx.secxtan x31x2

dydx=2esec2x.sec2 x.tan x31x2

(iii) Let y=log7(logx)

y=log(logx)log7

[ logarithmic property ]
(Differentiation of log x base e is known)

Differentiating w.r.t. x , we get,

dydx=1log 7×d(log(log x))dx

Using chain rule : dydx=dydu×dudx

dydx=1log 7.1log xd(log x)dx

dydx=1log 7.1log x1x

dydx=1x log 7 log x


flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon