(i) Let y=√3x+2+1√2x2+4
Differentiating w.r.t. x , we get,
dydx=d(√3x+2+1√2x2+4)dx
dydx=d(√3x+2)dx+d(1√2x2+4)dx
Using chain rule : dydx=dydu×dudx
dydx=12√3x+2×d(3x+2)dx−12(2x2+4)−12−1.d(2x2+4)dx
dydx=12√3x+2×(3+0)−12(2x2+4)−32.(4x+0)
dydx=32√3x+2−2x(2x2+4)32
(ii) Let y=esec2x+3 cos−1x
Differentiating w.r.t. x , we get,
dydx=esec2x+3 cos−1xdx
dydx=d(esec2x)dx+d(3cos−1x)dx
Using chain rule : dydx=dydu×dudx
dydx=esec2x.2 sec x.d(sec x)dx−3√1−x2
dydx=esec2x.2 secx.secx⋅tan x−3√1−x2
dydx=2esec2x.sec2 x.tan x−3√1−x2
(iii) Let y=log7(logx)
y=log(logx)log7
[ logarithmic property ]
(Differentiation of log x base e is known)
Differentiating w.r.t. x , we get,
dydx=1log 7×d(log(log x))dx
Using chain rule : dydx=dydu×dudx
dydx=1log 7.1log xd(log x)dx
dydx=1log 7.1log x1x
dydx=1x log 7 log x