The correct option is D the equation of normal at x=1 is
x+(1+e)y−(e2+e+1)=0.
Given, f(x)=y=e−(x−1)ln(xe)+x∫1f(x) dx
Differentiating w.r.t. x, we get
dydx=−(x−1)x−ln(xe)+y
⇒dydx−y=1x−lnx
I.F.=e−∫1dx=e−x
Now, the general solution is
ye−x=∫(1x−lnx)e−xdx+C
⇒ye−x=∫e−xxdx−∫(lnx)e−xdx+C
⇒ye−x=e−xlnx+∫(e−x)lnx−∫lnxe−xdx+C
⇒ye−x=e−xlnx+C
⇒y=lnx+Cex=f(x)
since f(1)=e, therefore C=1
∴f(x)=lnx+ex
⇒f′(x)=1x+ex
Slope of tangent at point (1,e) is (1+e).
and slope of normal at point (1,e) is −11+e.
Equation of tangent:
y−e=(1+e)(x−1)
⇒(1+e)x−y−1=0
Equation of normal:
y−e=−11+e(x−1)
⇒(1+e)(y−e)=−x+1
∴x+(1+e)y−(e2+e+1)=0