wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Obtain the inverse of the following matrix using elementary operations A=012123311


Open in App
Solution

Given A=012123311

We know that A=IA

012123311=100010001A
Applying R1R2
123012311=010100001A
Applying R3R33R1
12301233(1)13(2)13(3)=01010003(0)03(1)13(0)A
123012058=010100031A
Applying R1R12R2
12(0)22(1)32(2)012058=02(1)12(0)02(0)100031A
101012058=210100031A
Applying R3R3+5R2
1010120+5(0)5+5(1)8+5(2)=2101000+5(1)3+5(0)1+5(0)A
101012002=210100531A
Applying R312R3
101012001=⎢ ⎢ ⎢210100523212⎥ ⎥ ⎥A
Applying R1R1+R3
1+00+01+1012001=⎢ ⎢ ⎢ ⎢ ⎢ ⎢2+521+(32)0+12100523212⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
100012001=⎢ ⎢ ⎢ ⎢ ⎢121212100523212⎥ ⎥ ⎥ ⎥ ⎥A
Applying R2R22R3
10002(0)12(0)22(1)001=⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢12121212(52)02(32)02(12)523212⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥A
100010001=⎢ ⎢ ⎢ ⎢ ⎢121212431523212⎥ ⎥ ⎥ ⎥ ⎥A
This is similar to I=A1A
Hence, A1=⎢ ⎢ ⎢ ⎢ ⎢121212431523212⎥ ⎥ ⎥ ⎥ ⎥

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon