Let θ=π5 and A=[cosθsinθ−sinθcosθ].If B=A+A4, then det (B):
A
lies in (2,3)
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
is one
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
is zero
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
lies in (1,2)
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is D lies in (1,2) A=[cosθsinθ−sinθcosθ] B=A+A4 A2=[cosθsinθ−sinθcosθ][cosθsinθ−sinθcosθ] =[cos2θ−sin2θ2sinθcosθ−2sinθcosθ−sin2θ+cos2θ] A2=[cos2θsin2θ−sin2θcos2θ]
Simmilarly A4=[cos4θsin4θ−sin4θcos4θ] B=A4+A=[cos4θsin4θ−sin4θcos4θ]+[cosθsinθ−sinθcosθ] B=A4+A=[cos4θ+cosθsin4θ+sinθ−sin4θ−sinθcos4θ+cosθ] detB=(cos4θ+cosθ)2+(sin4θ+sinθ)2 =cos24θ+cos2θ+2cos4θcosθ+sin24θ+sin2θ+2sin4θsinθ =2+2(cos4θcosθ+sin4θsinθ) =2+2cos3θ
at θ=π5 |B|=2+2cos3π5=2−2(sin18) |B|=2(1−√5−14)=2(5−√54)=5−√52