Given: 3[xyzw]=[x6−12w]+[4x+yz+w3]
⇒[3x3y3z3w]=[x+46+x+y−1+z+w2w+3]
Comparing, we get
3x=x+4 ⋯(i)
3y=6+x+y ⋯(ii)
3z=−1+z+w ⋯(iii)
3w=2w+3 ⋯(iv)
Solving equation (i)
⇒3x=x+4
⇒3x−x=4⇒2x=4
⇒x=42=2
Solving equation (ii)
⇒3y=6+x+y
⇒3y−y=6+x
⇒2y=6+x
Putting x=2
⇒2y=6+2
⇒2y=8⇒y=4
Solving equation (iv)
⇒3w=2w+3
⇒3w−2w=3
⇒w=3
Solving equation (iii)
⇒3z=−1+z+w
⇒3z−z=−1+w
⇒2z=−1+w
Putting w=3
⇒2z=−1+3
⇒2z=2
⇒z=22=1
∴x=2,y=4,w=3 and z=1