The correct option is D A-T; B-P; C-Q; D-R
(A) Equation of line passing through origin is xa=yb=zc
∴∣∣
∣∣21−11−21abc∣∣
∣∣=0
⇒a(−1)−b(3)+c(−5)=0
−a−3b−5c=0
a+3b+5c=0 ... (1)
Also, ∣∣
∣
∣
∣∣83−312−11abc∣∣
∣
∣
∣∣=0
a(−2)−b(23)+c(103)=0
2a+2b3−10c3=0
3a+b−5c=0 ... (2)
Now, a+3b+5c=0
3a+b−5c=0
a−20=b20=c−8
a5=b−5=c4
Equation of line is
x5=y−5=z+4 ... (2)
x−21=y−1−2=z+11 ... (3)
Now,
x−832=y+3−1=z−11 ... (4)
Point on (2) is (5λ,−5λ,+4λ)
Point on (3) is (2+k1,1−2k1,−1+k1)
Point on (4) is (83+2k2,−3−k2,1+k2)
On solving,
2+k1+1−2k1=0
−k1+3=0
k1=3
P≡(5,−5,2)
Again for Q,
83+2k2−3−k2=0
k2−13=0
k2=13
Q≡(103,−103,43)
PQ=√(53)2+(53)2+(23)2
=√543
PQ2=d2=549=6
(B) tan−1(x+3−x+31+(x2−9))=tan−1(34)
6x2−8=34
3x2−24=24
3x2=48
x=±4
(C) (→b−→a).⎛⎜⎝→b+→a−μ→b4⎞⎟⎠=0
(→b−→a).(4→b+→a−μ→b)=0
(4−μ)b2−a2=0 ... (1)
Also, 2∣∣
∣∣→b+→a−μ→b4∣∣
∣∣=∣∣∣→b−→a∣∣∣
2∣∣
∣∣(4−μ)→b+→a4∣∣
∣∣
(4−μ)2b24+a24=b2+a2
3a24=(4−μ)2−44.b2
3a2=((4−μ)2−4)b2 ... (2)
From equations (1) and (2),
3(4−μ)=(4−μ)2−4
(4−μ)2−3(4−μ)−4=0
⇒μ=0,5
μ=5 is not admissibl.
(D) f(0)=9,
f(x)=sin(9x2)sinx2
=(3−4sin2x2)(3−4sin23x2)
=9−12sin2x2−12sin23x2+16sin2x2.sin23x2
=9−6(1−cosx)−6(1−cos3x)+4(1−cosx)(1−cos3x)
=1+6cosx+6cos3x−4cosx−4cos3x+4cosxcos3x
I=2ππ∫−πsin9x2sinx2
=4ππ∫01+2cosx+2cos3x+2(cos4x+cosx)
=4π×π
=4