wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Match the statements in Column-I with the values in Column-II.
Column IColumn II(A)A line from the origin meets the lines(p)4x21=y12=z+11 andx822=y+31=z11 at P and qrespectively. If length PQ=d, then d2 is (B)The values of x satisfying(q)0tan1(x+3)tan1(x3)=sin1(35)are(C)Non-zero vectors a,b andc satisfy(r)4a.b=0,(ba).(b+c)=0and 2|b+c|=|ba|If a=μb+4c,then the possible values ofμ are (D)Let f be the function on [π,π] given by (s) 5f(0)=9 and f(x)=sin(9x2)/sin(x2)for x0.The value of2πππf(x)dx is (t)6

A
A-R; B-P; C-Q; D-S
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
A-S; B-Q; C-P; D-R
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
A-Q; B-P; R-R; D-T
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
A-T; B-P; C-Q; D-R
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D A-T; B-P; C-Q; D-R
(A) Equation of line passing through origin is xa=yb=zc
∣ ∣211121abc∣ ∣=0
a(1)b(3)+c(5)=0
a3b5c=0
a+3b+5c=0 ... (1)
Also, ∣ ∣ ∣ ∣8331211abc∣ ∣ ∣ ∣=0
a(2)b(23)+c(103)=0
2a+2b310c3=0
3a+b5c=0 ... (2)
Now, a+3b+5c=0
3a+b5c=0
a20=b20=c8
a5=b5=c4
Equation of line is
x5=y5=z+4 ... (2)
x21=y12=z+11 ... (3)
Now,
x832=y+31=z11 ... (4)
Point on (2) is (5λ,5λ,+4λ)
Point on (3) is (2+k1,12k1,1+k1)
Point on (4) is (83+2k2,3k2,1+k2)
On solving,
2+k1+12k1=0
k1+3=0
k1=3
P(5,5,2)
Again for Q,
83+2k23k2=0
k213=0
k2=13
Q(103,103,43)
PQ=(53)2+(53)2+(23)2
=543
PQ2=d2=549=6
(B) tan1(x+3x+31+(x29))=tan1(34)
6x28=34
3x224=24
3x2=48
x=±4
(C) (ba).b+aμb4=0
(ba).(4b+aμb)=0
(4μ)b2a2=0 ... (1)
Also, 2∣ ∣b+aμb4∣ ∣=ba
2∣ ∣(4μ)b+a4∣ ∣
(4μ)2b24+a24=b2+a2
3a24=(4μ)244.b2
3a2=((4μ)24)b2 ... (2)
From equations (1) and (2),
3(4μ)=(4μ)24
(4μ)23(4μ)4=0
μ=0,5
μ=5 is not admissibl.
(D) f(0)=9,
f(x)=sin(9x2)sinx2
=(34sin2x2)(34sin23x2)
=912sin2x212sin23x2+16sin2x2.sin23x2
=96(1cosx)6(1cos3x)+4(1cosx)(1cos3x)
=1+6cosx+6cos3x4cosx4cos3x+4cosxcos3x
I=2πππsin9x2sinx2
=4ππ01+2cosx+2cos3x+2(cos4x+cosx)
=4π×π
=4

flag
Suggest Corrections
thumbs-up
0
similar_icon
Similar questions
View More
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Skew Lines
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon