wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Prove the following :
2tan1(12)+tan1(17)=tan1(3117)

Open in App
Solution

Taking L.H.S.
2tan1(12)+tan1(17)=tan1(3117)
2tan1x=tan1(2x1x2)
L.H.S=tan1⎜ ⎜ ⎜ ⎜ ⎜2×121(12)2⎟ ⎟ ⎟ ⎟ ⎟+tan1(17)
L.H.S=tan1⎜ ⎜ ⎜1114⎟ ⎟ ⎟+tan1(17)
L.H.S=tan1⎜ ⎜ ⎜134⎟ ⎟ ⎟+tan1(17)
L.H.S=tan1(43)+tan1(17)
L.H.S=tan1⎜ ⎜ ⎜43+17143×17⎟ ⎟ ⎟
(tan1x+tan1y=tan1x+y1xy)

L.H.S=tan1⎜ ⎜ ⎜4×7+3×17×37×347×3⎟ ⎟ ⎟
L.H.S=⎜ ⎜ ⎜28+32121421⎟ ⎟ ⎟
L.H.S=tan1⎜ ⎜ ⎜31211721⎟ ⎟ ⎟
L.H.S=tan1(3121×2117)
L.H.S=tan1(3117)=R.H.S.
Hence Proved.

flag
Suggest Corrections
thumbs-up
7
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon