wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find f(x) if f(x)=(sinx)sinx for all 0<x<π.

Open in App
Solution

Let y=(sinx)sinx

Taking log on both sides, we get
logy=log(sinxsinx)

logy=sinx.log(sinx)

(log(an)=n.log a)

d(logy)dx=d(sin x.log(sin x))dx

d(logy)dy(dydx)=d(sinx.log(sinx))dx

Differentiating both sides w.r.t. x , we get,

1y.dydx=d(sinx.log(sinx))dx

Using Product Rule : (uv)=uv+vu

1y.dydx=d(sinx.)dx.log(sinx)+d(log(sinx))dx.sinx

1y.dydx=cosxlog(sinx)+1sinx.cosx.sinx

1y.dydx=cosxlog(sinx)+cosx

dydx=y(cosx.log(sinx)+cosx)

Substituting y=(sinx)sinx

dydx=(sinx)sinx(cosx.log(sinx)+cosx)

dydx=(sinx)sinx.cosx(log(sinx)+1)

f(x)=(sinx)sinx.cosx(log(sinx)+1)


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon