Let y=(sinx)sinx
Taking log on both sides, we get
logy=log(sinxsinx)
logy=sinx.log(sinx)
(∵log(an)=n.log a)
d(logy)dx=d(sin x.log(sin x))dx
d(logy)dy(dydx)=d(sinx.log(sinx))dx
Differentiating both sides w.r.t. x , we get,
1y.dydx=d(sinx.log(sinx))dx
Using Product Rule : (uv)′=u′v+v′u
1y.dydx=d(sinx.)dx.log(sinx)+d(log(sinx))dx.sinx
1y.dydx=cosxlog(sinx)+1sinx.cosx.sinx
1y.dydx=cosxlog(sinx)+cosx
dydx=y(cosx.log(sinx)+cosx)
Substituting y=(sinx)sinx
dydx=(sinx)sinx(cosx.log(sinx)+cosx)
dydx=(sinx)sinx.cosx(log(sinx)+1)
⇒f′(x)=(sinx)sinx.cosx(log(sinx)+1)