wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find dydx if xy+yx=1

Open in App
Solution

Let u=yx and v=xy
Now u+v=1

Differentiating w.r.t. x ,

d(u+v)dx=d(1)dx

d(u)dx=d(v)dx=0(i)

Now, we will find the derivative of u and v separately.

Finding d(u)dx

u=yx
Taking log ⁡ on both sides, we get

log u=log(y)x
log u=x log(y)

as (log(an)=n (log a)

Differentiating both sides w.r.t. x, we get

d(log u)dx=d(x.logy)dx


1u(dudx)=d(x.log y)dx

1ududx=d(x logy)dx

Using product rule : (uv)=uv+vu

1ududx=dxdxlogy+d(logy)dx.x


1ududx=1.log y+xd(logy)dy.dydx

1ududx=log y+xy.dydx

dudx=u(log y+xy.dydx)

Substituting u=yx, we get

dudx=yx(log y+xydydx)

dudx=yxlog y+yx1x.dydx(ii)

Finding d(v)dx

v=xy

Taking log both sides, we get,

log v=log(xy)

log v=y.logx

(as log(an)=n log a)

Differentiating both sides w.r.t. x, we get

d(logv)dx=d(y.logx)dx
d(logv)dx(dvdx)=d(y.log x)dx

1v×dvdx=d(y.log x)dx

Using product rule , (uv)=uv+vu

1v(dvdx)=d(y)dx.log x+d(log x)dx.y

1v(dvdx)=dydx.log x+yx

dvdx=v(dydxlog x+yx)

Substituting v=xy, we get

dvdx=xy(dydxlog x+yx)

dvdx=xylog x.dydx+xy×yx(iii)

From (i)

d(u)dx+d(v)dx=0

Substituting the value of (ii) and (iii) in (i), we get

(yxlog y+yx1.xdydx)+(xylog x.dydx+xyyx)=0

dydx(xy log x+yx1.x)=(xy1y+yxlog y)

dydx=(xy1y+yx log y)(xy log x+yx1.x)

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon