Let
u=yx and
v=xy
Now
u+v=1
Differentiating w.r.t. x ,
d(u+v)dx=d(1)dx
d(u)dx=d(v)dx=0⋯(i)
Now, we will find the derivative of u and v separately.
Finding
d(u)dx
u=yx
Taking
log on both sides, we get
log u=log(y)x
log u=x log(y)
as
(log(an)=n (log a)
Differentiating both sides w.r.t.
x, we get
d(log u)dx=d(x.logy)dx
1u(dudx)=d(x.log y)dx
1ududx=d(x logy)dx
Using product rule :
(uv)′=u′v+v′u
1ududx=dxdxlogy+d(logy)dx.x
1ududx=1.log y+x⋅d(logy)dy.dydx
1ududx=log y+xy.dydx
dudx=u(log y+xy.dydx)
Substituting u=yx, we get
dudx=yx(log y+xydydx)
dudx=yxlog y+yx−1x.dydx⋯(ii)
Finding
d(v)dx
v=xy
Taking log both sides, we get,
log v=log(xy)
log v=y.logx
(as
log(an)=n log a)
Differentiating both sides w.r.t. x, we get
d(logv)dx=d(y.logx)dx
d(logv)dx(dvdx)=d(y.log x)dx
1v×dvdx=d(y.log x)dx
Using product rule , (uv)′=u′v+v′u
1v(dvdx)=d(y)dx.log x+d(log x)dx.y
1v(dvdx)=dydx.log x+yx
dvdx=v(dydxlog x+yx)
Substituting v=xy, we get
dvdx=xy(dydxlog x+yx)
dvdx=xylog x.dydx+xy×yx⋯(iii)
From
(i)
d(u)dx+d(v)dx=0
Substituting the value of (ii) and (iii) in (i), we get
(yxlog y+yx−1.xdydx)+(xylog x.dydx+xyyx)=0
dydx(xy log x+yx−1.x)=−(xy−1y+yxlog y)
dydx=−(xy−1y+yx log y)(xy log x+yx−1.x)