Show that:
(i) [5−167][2134]≠[2134][5−167]
(ii) ⎡⎢⎣123010110⎤⎥⎦⎡⎢⎣−1100−11234⎤⎥⎦≠⎡⎢⎣−1100−11234⎤⎥⎦⎡⎢⎣123010110⎤⎥⎦
(i) Solving L.H.S.
[5−167]2×2[2134]2×2
=[5×2+(−1)×35×1+(−1)×46×2+7×36×1+7×4]2×2
=[10−35−412+216+28]
=[713334]
Solving R.H.S.
[2134]2×2[5−167]2×2
=[2×5+1×62×(−1)+1×73×5+4×63×(−1)+4×7]
=[10+6−2+715+24−3+28]
=[1653925]≠L.H.S
Thus, L.H.S≠R.H.S
Hence Proved.
(ii) Solving L.H.S.
⎡⎢⎣123010110⎤⎥⎦3×3⎡⎢⎣−1100−11234⎤⎥⎦3×3
=⎡⎢⎣−1+0+61−2+90+2+120+0+00−1+00+1+0−1+0+01−1+00+1+0⎤⎥⎦
=⎡⎢⎣58140−11−101⎤⎥⎦
Solving R.H.S.
⎡⎢⎣−1100−11234⎤⎥⎦3×3⎡⎢⎣123010110⎤⎥⎦3×3
=⎡⎢⎣−1+0+0−2+1+0−3+0+00+0+10−1+10+0+02+0+44+3+46+0+0⎤⎥⎦
=⎡⎢⎣−1−1−31006116⎤⎥⎦
≠L.H.S.
∴L.H.S.≠R.H.S.
Hence proved .