wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If y=3cos(logx)+4sin(logx), show that x2y2+xy1+y=0

Open in App
Solution

Finding dydx
Let y=3cos(logx)+4sin(logx)
Here, dydx=y1 and d2ydx2=y2
Differentiating both sides w.r.t. x we get
dydx=3sin(logx)×1x+4cos(logx)×1x
{Using chain ruledydx=dydu×dudx}
xdydx=3sin(logx)+4cos(logx)(i)

Finding d2ydx2
Again, differentiating both sides of (i) w.r.t. x, we get
(xdydx)=(3sin(logx))+(4cos(logx))
(xdydx)=3cos(logx)×(logx)+4(sin(logx))×(logx)
(xdydx)=3cos(logx)×1x4sin(logx)×1x
xdydx+(dydx)=3cos(logx)×1x4sin(logx)×1x
dydx+xd2ydx2=1x(3cos(logx)+4sin(logx))
Where y=3cos(logx)+4sin(logx)
dydx+xd2ydx2=1x×y
xdydx+x2d2ydx2=y
x2d2ydx2+xdydx+y=0
x2y2+xy1+y=0
Hence proved.

flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon