Finding dydx
Let y=3cos(logx)+4sin(logx)
Here, dydx=y1 and d2ydx2=y2
Differentiating both sides w.r.t. x we get
dydx=−3sin(logx)×1x+4cos(logx)×1x
{Using chain ruledydx=dydu×dudx}
⇒xdydx=−3sin(logx)+4cos(logx)⋯(i)
Finding d2ydx2
Again, differentiating both sides of (i) w.r.t. x, we get
(xdydx)′=(−3sin(logx))′+(4cos(logx))′
⇒(xdydx)′=−3cos(logx)×(logx)′+4(−sin(logx))×(logx)′
⇒(xdydx)′=−3cos(logx)×1x−4sin(logx)×1x
⇒x′dydx+(dydx)′=−3cos(logx)×1x−4sin(logx)×1x
⇒dydx+xd2ydx2=−1x(3cos(logx)+4sin(logx))
Where y=3cos(logx)+4sin(logx)
⇒dydx+xd2ydx2=−1x×y
⇒xdydx+x2d2ydx2=−y
⇒x2d2ydx2+xdydx+y=0
⇒x2y2+xy1+y=0
Hence proved.