Given that:
np4=20×np2
n!(n−4)!=20×n!(n−2)!
(n−2)(n−3)(n−4)!=20×(n−4)!
n2−5n+6=20
n2−5n−14=0
n2−7n+2n−14=0
(n−7)(n+2)=0
n=7,−2(Not considerable)
Hence, n=7
If np2=56, then find n
If nP4 = 12 nP2 the find n.