nth term of the series 2 + 4 + 7 + 11 + ...... will be
Let S = 2 + 4 + 7 + 11 + 16 + ...........+ Tn
S = 2 + 4 + 7 + 11 + 16 + ...........Tn−1 + Tn
Subtracting, we get
0 = 2 + {2 + 3 + 4 +..........+(Tn−Tn−1)} - Tn
⇒ Tn = 1 + (1 + 2 + 3 + 4 + .........upto n terms)
⇒ 1 + 12n(n+1) = 2+n2+n2 = n2+n+22