nCr-1=36,nCr=84&nCr+1=126, then r is equal to:
1
2
3
None of these
Explanation for the correct option:
Finding the value of r:
Given that:
nCr-1=36,nCr=84&nCr+1=126
Now, nCrnCr-1=8436....(i)
We know that nCr=n!r!(n-r)!
∴nCr-1=n!(r-1)!(n-r+1)!
Applying and solving (i), we get;
⇒n!r!(n-r)!n!(r-1)!(n-r+1)!=8436⇒n!r(r-1)!(n-r)!n!(r-1)!(n-r+1)(n-r)!=73⇒(n-r+1)r=73⇒3n−3r+3=7r⇒10r=3n+3....(ii)
Now, nCr+1nCr=12684
⇒n!r+1!(n-r-1)!n!r!(n-r)!=12684⇒n!r+1r!(n-r-1)!n!r!(n-r)(n-r-1)!=32⇒(n-r)(r+1)=32⇒5r=2n−3.....(iii)
Now, dividing equation (ii) by (iii),
⇒10r5r=(3n+3)(2n-3)⇒2(2n−3)=3n+3⇒4n−6=3n+3⇒n=9∴10r=3n+3=3(9)+3⇒10r=30⇒r=3
Hence, the correct answer is option (C).
If nCr−1 = 36,nCr = 84 and nCr+1 = 126, then the value of r is