Let z=x+iy
z2+|z|=0
⇒x2−y2+2xyi+√x2+y2=0
comparing real and imaginary parts
⇒x2−y2+√x2+y2=0
and 2xy=0⇒x=0 or y=0
Case−1: When x=0
⇒−y2+√y2=0
⇒y2=|y|
⇒y2=±y
⇒y=0,±1
∴ solutions are (0,0)(0,1),(0,−1)
Case−2: When y=0
⇒x2+√x2=0⇒x=0
∴ Solution is (0,0)
Hence, solutions of the equations are (0,0),(0,1),(0,−1)