wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Number of solutions of the equations |2x2+x1|=|x2+4x+1|

Open in App
Solution

2x2+x1>0 for x(,1)(1/2,)

and x2+4x+1>0 for x(,(2+3))((2+3),))

Case 1:

If <x<(2+3), then

2x2+x1=x2+4x+1x23x2=0

x=3±172, do not satisfy the condition for case 1.

Case 2:

(2+3)<x<1

2x2+x1=(x2+4x+1)3x2+5x=0
x=0,5/2, do not satisfy the condition for case 2.

Case 3:

1<x<2+3

(2x2+x1)=(x2+4x+1)x23x2=0

x=3172, satisfies the condition for case 3.

Case 4:

2+3<x<1/2

(2x2+x1)=x2+4x+13x2+5x=0
x=0, satisfies the condition for case 4.

Case 5 :

x>1/2

2x2+x1=x2+4x+1x23x2=0

x=3+172, satisfies the condition for case 5.


3 solutions are possible for x.



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving QE using Quadratic Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon