Here lower limit =a, and upper limit =b,f(x)=sinx
Now, By definition
f(A+ih)=f(a+ih)=sin(a+ih)
f is continuous on (a,b) and we divide (a,b) into n sub-intervals of equal length.
h=b−an
∴nh=b−a
Also as n→∞,h→0
∫basinxdx=limh→0h∑ni=1f(a+ih)
∑ni=1f(a+ih)=limh→0h∑ni=1sin(a+ih)=limh→0h[cos(a+h2)−cos(a+nh+h2)]2sinh2
=limh→0h[cos(a+h2)−cos(b+h2)]sinh2h2
∴∫basinxdx=cosa−cosb is required limit of sum