Coordinates of S are
(16+95,18+215)=(5,395)
Coordinates of T are
(33+165,69+185)=(495,875)
(ST)2=(5−495)2+(395−875)2
=(245)2+(485)2=5765
⇒5(ST)2=576
(PQ)2=29,(QR)2=205,(PR)2=320
(PS)2=[(2/5)(PQ)2]=11625.
(QS)2=[(3/5)(PQ)2]=26125.
(QT)2=[(3/5)(QR)2]=36925.
So that (PR)2+(QR)2+51=320+205+51=576
100(PS)2=4×116=464
and (PQ)2+2(QR)2+25=29+410+25=464
Next, 2(PR)2−64=2×320−64=576 (r)
50(QS)2−2(PQ)2=2×261−2×29=464 (s)
and 5(QT)2+(QR)2+2=369+205+2=576 (t)
Combining these results we get the required answer.